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ABSTRACT 

This paper combines a copula function and multiplicative error models to capture the dependence 

structure and the volatility patterns simultaneously, named cMEM. We examine hedging performance of the 

presenting cMEM with different estimation window sizes for the futures contract of Taiwan stock price index. 

The results have shown that the cMEM with 1250-day window size for Clayton survival, Gumbel and OLS 

has better performance in which Clayton survival survives during the crisis and has the best out-of-sample 

hedging effectiveness. The empirical evidence indicates that the cMEM performs well for the turmoil periods.  
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1. Introduction 

Accurate forecasts for volatility of and correlation between spot and futures are important for 

measuring minimum-variance hedge ratios (MVHR). To do that, previous literature often uses bivariate 

GARCH-type models (Baillie and Myers, 1991; Kroner and Sultan, 1993; Park and Switzer, 1995; Gagnon 

and Lypny, 1995; Kavussanos and Nomikos, 2000; Bystrom, 2003; Lee and Yoder, 2007). However, Longin 

and Solnik (2001) and Ang and Chen (2002), among others, have provided evidence of the asymmetric 

dependence between stock returns, indicating the conventional assumption of joint normality or joint 

elliptical distribution has become inadequate, which is the key assumption for bivariate GARCH-type models. 

Recently, more and more studies deal with the dependence structure in estimation of optimal hedge ratios. 

Dependence structure is a broader concept of market co-movement than implied by linear correlation such as 

the tail dependence and the nonlinear and/or asymmetric dependence implied by the shape of the joint 

distribution. Copula-based model has proven performed well in capturing the patterns and forecasting 

dependence structure. The copula method has several merits. First, the copula functions allow non-linear 

dependence structure, and some of them exhibit asymmetric dependence and tail dependence between spot 

and futures returns which is closer to the reality that spot and futures markets boom together or collapse 

together more often than that implied by joint normality. Second, copula method enables to deal with the 

specification of marginal distributions separately from the specification of market co-movement and 

dependence. That means the marginal distributions and the joint distribution implied by copula functions 

need not necessarily belong to the same family, providing flexibility in modelling the joint distributions and 

easing the computational efforts in estimation (Joe and Xu, 1996). Lai, Chen and Gerlach (2008), Lai (2009) 

and Lee (2009) apply various dependence structures implied by copula functions to estimating time-varying 

minimum-variance hedge ratios and find that the model can improve hedging performance in terms of 

variance reduction.  

Most of the papers using copula approach still employ the GARCH-type model as marginal model. 

However, multiplicative error model (MEM) has recently been applied widely to the non-negative random 

variables such as volatility, volume and number of trades. MEM has also been proven performed better in 

forecasting volatility than the GARCH-type models (Engle and Gallo, 2006; Cipollini, Engle and Gallo, 

2009; Brownlees and Gallo, 2009). To exploit the advantages of copula and multiplicative error models, 

this paper combines a copula function and two univariate MEMs proposed by Brownlees and Gallo (2009) 

to build the joint distribution of spot and futures returns and develop a copula-MEM (cMEM) framework 

for dynamic minimum-variance hedging in stock futures of Taiwan. The results show that the best cMEM 

outperforms the conventional approaches such as the ordinary least square (OLS) and the error correction 

model (ECM) by more than 11% for out-of-sample during 2007-2010 including the sub-prime crisis.  

In addition, this paper compares different strategies with different estimation windows. Since MVHR 

is calculated based on the latest available information set, the size of the estimation window for dependence 

structure may play an important role in out-of-sample rolling hedging. Too larger window could dilute the 

impact of the latest observations and can not reflect the change of the dependence structure immediately, 

possibly resulting in poor hedging performance. However, too small window could incur estimation errors 

for dependence structure. This paper investigates five different sizes (500/750/1000/1250/1500) of 
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estimation window and evaluates the hedging performance. The results show that cMEMs with 1250 

estimation window provide better hedging performance.  

The outline of this article is as follows. In the next section, the copula functions, the MEMs and the 

copula MEM are introduced. In the following section, the hedging performance criterion is discussed. Data 

descriptions and empirical results are reported and discussed in the fourth section, and the last section 

concludes. 

 

2. Methodology 

2.1 Univariate multiplicative model (MEM) for volatility 

The MEM of observed volatility (standard deviation) tiV ,  for spot returns tr ,1  and futures returns 

tr ,2  is assumed 
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All estimates are obtained by the maximum likelihood estimation (MLE). 

 

2.2 Copula function, marginal distributions of spot and futures returns and cMEM 

A copula is a multivariate cumulative distribution function whose marginal distribution is uniform on 

the interval [0,1]. It captures the dependence structure of a multivariate distribution. According to Sklar’s 

(1959) theorem, a bivariate joint cumulative distribution function ( F ) of spot returns tr ,1  and futures 

returns tr ,2  can be decomposed into two marginal cumulative distribution functions ( 1F  and 2F ) and a 

copula cumulative distribution function ( C ) that completely describes the dependence structure between 
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the two series: 
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(4) 

where );( , itii rF θ , i =1,2, is the marginal cumulative distribution function of tir ,  and iθ  and ρ  are the 

parameters sets of );( , itii rF θ  and C , respectively. 

Assuming that all cumulative distribution functions are differentiable, the bivariate joint density is 

then given by  
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2 ),,;,( ∂∂∂ rθθ ; tiu ,  is the “probability integral 

transforms” of tir ,  based on );( , itii rF θ ; ( )=ρ;, ,2,1 tt uuc  tttt uuuuC ,2,1,2,1
2 );,( ∂∂∂ ρ is the copula 

density function1; );( , itii rf θ  is the marginal density of tir , . Thus, the bivariate joint density of tr ,1  and 

tr ,2  is the product of the copula density and two marginal densities. 

The marginal models for both returns are given as follows: 
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where );( , itii rf θ  is a density function with conditional mean 1,1,0, −+ tiii raa  and conditional variance tih , ; 

],,,[ 1,0, iiiii mcaa=θ . Though 2
,ˆ tiσ , estimated by maximizing (3), captures the patterns for volatility, it 

could not be necessarily accurate in size and scale. Therefore, we use (7) to linearly correct the bias and scale of 

2
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Once all estimates are obtained, the one-step-ahead forecast for conditional variance of model k  is 

defined as 

( )21,1, ˆˆˆ k
ti

k
i

k
i

k
ti mch ++ += σ

 
(10) 

and then the one-step ahead MVHR is forecasted by  

                                                           
1 This paper employs four types of copula function commonly used in literature: Clayton, Clayton survival, 
Gumbel and Gumbel survival. Details please see Nelsen (1999). 
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The returns of a hedged portfolio is given by 
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The variance of the hedged portfolio can be characterized as k
pVar = )( 1,

k
tpRVar + . The hedging 

effectiveness of the cMEM is evaluated on the percentage variance reduction of the hedged portfolio relative 

to the OLS static hedging model, and the relative hedge performance is defined as 
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3. Empirical Results 

The daily data of spot and futures for stock price index of Taiwan over 2005/8/26-2010/12/31 are 

obtained from Taiwan Futures Exchange (TAIFEX). The futures data are nearby contracts. The returns are 

calculated by 

[ ] 100)/log( 1,,, ×= −tititi CCr
 

(14) 

where tiC ,  is the close price at t . The observed volatility is calculated by  

[ ] 100)/log( ,,, ×= tititi LHV
 

(15) 

where tiH ,  and tiL ,  are the highest and the lowest prices, respectively. The daytime return OC
tir 1, −  is 

calculated by 

[ ] 100)/log( ,,, ×= titi
OC
ti OCr  (16) 

where tiO ,  is the open price. Since we have already learned that the sub-prime crisis begins from 

September 2007, we divide the sample observations into in- and out-of-sample periods before and after the 

2007/9/1, respectively. By doing so, we can see if cMEM model could work from the beginning date of the 

crisis and deliver better performance over the crisis period. To investigate the impact of estimation window 

on the hedging effectiveness, the window size can be 500, 750, 1000, 1250 or 1500 daily observations. 

Table 1 shows the descriptive statistics of spot and futures for the sample periods. The mean returns 

for spot and futures returns are similar and close to zero, while the daytime return of futures are negative 

and almost 16 times larger than those of spot. The standard deviations of spot and futures returns are larger 

than those of daytime returns and similar to the mean of ranges. 

Table 2 shows the out-of-sample hedging performance. The results show that Clayton survival copula 

provides the best performance with 500, 750, 1000 and 1250 estimation window, resulting in more than 10% 

higher performance against the OLS. With 1500 observations in the estimation window, Gumbel copula gives 

the best performance. The best copula model, Clayton survival with window size 1250, outperforms the best 

OLS strategy by 11.425%. Copula models with patterns of upward co-movement, Clayton survival and 
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Gumbel, provide generally higher hedging performance than do those with patterns of downward 

co-movement. 

 

4. Conclusion 

This paper combines a copula function and multiplicative error models to capture the dependence 

structure and the volatility patterns simultaneously, named cMEM. We examine hedging performance of the 

presenting cMEM with different estimation window sizes for the futures contract of Taiwan stock price index. 

The results have shown that the cMEM with 1250-day window size for Clayton survival, Gumbel and OLS 

has better performance in which Clayton survival survives during the crisis and has the best out-of-sample 

hedging effectiveness. The empirical evidence indicates that the cMEM performs well for the turmoil periods.  
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Table 1 Descriptive statistics 

 
tr ,1  tr ,2  

OC
tr ,1  

OC
tr ,2  tV ,1  tV ,2  

Mean 0.029091 0.028825 0.009501 -0.135799 1.693813 1.405910 

Median 0.075047 0.068988 0.045348 -0.111027 1.389729 1.193226 

Maximum 6.765088 6.524620 9.598232 5.956979 12.44374 7.402872 

Minimum -8.848390 -6.912347 -7.274301 -5.591600 0.100000 0.146149 

Std. Dev. 1.636503 1.413509 1.281418 1.116574 1.103603 0.830577 

Skewness -0.327263 -0.287744 -0.008919 -0.047250 2.219883 1.832962 

Kurtosis 6.748854 5.697678 7.992842 5.794572 12.16457 8.234957 

Jarque-Bera 1258.151 661.0017 2165.689 679.2374 9009.014 3548.302 

Observations 2085 2085 2085 2085 2085 2085 
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Table 2 Out-of-sample performance 

 Clayton Clayton 

survival 

Gumbel Gumbel 

survival 

ECM OLS 

Panel A. Variance of hedged portfolio 

500 0.224534 0.215385 0.216331 0.223128 0.242514 0.241709 

750 0.221595 0.214790 0.215390 0.218888 0.242075 0.241974 

1000 0.220700 0.214761 0.214922 0.216748 0.242501 0.242235 

1250 0.224533 0.213929 0.214246 0.217643 0.242235 0.241522 

1500 0.226678 0.218343 0.217058 0.219116 0.244806 0.243586 

Best 0.220700 0.213929 0.214246 0.216748 0.242075 0.241522 

 (1000) (1250) (1250) (1000) (750) (1250) 

       

Panel B. HPI 

500 7.106 10.891 10.499 7.687 -0.333  

750 8.422 11.234 10.986 9.541 -0.042  

1000 8.890 11.342 11.275 10.522 -0.110  

1250 7.034 11.425 11.293 9.887 -0.295  

1500 6.941 10.363 10.891 10.046 -0.501  

Best 8.621 11.425 11.293 10.257 -0.229  

The number in parenthesis is the size of estimation window for the best model. “Best” denotes the best model 

across different window size. 
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摘要 
本研究結合 copula 函數與 Brownlees and Gallo (2009)的單變數 multiplicative error model(MEM)

架構，建構台灣股票指數期、現貨動態避險模型（copula MEM , cMEM） ，估計最小變異最適避險比

率 (minimum-variance optimal hedge ratio)，進而比較各模型在不同估計視窗下的避險績效。本文實證

結果發現，在估計視窗 1250 筆時，Clayton survival、Gumbel 及 OLS 都有較佳的避險績效，其中以

Clayton survival 在金融危機期間擁有最佳的避險績效，較最佳的 OLS 模型改善超過 11%。本文結果

證實 cMEM 模型在危機期間具有不錯的避險表現。 

 

關鍵字: 避險比率; copula;相乘誤差模型; 相關結構;股票期貨 


